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Rigorous Analysis of Open Microstrip Lines
of Arbitrary Cross Section in Bound and

Leaky Regimes

KRZYSZTOF A. MICHALSKI, SENIOR ME~ER, IEEE, AND DAILIAN ZHENG, MEMBER, IEEE

Abstracf —The problem of an open microstrip line of arbitrary cross

section is solved by an integraf equation tecfudque in conjunction with the

method of moments. The approach is general and cmr handle as special

cases multiple strips and strips of finite or infinitesimal thickness. It

applies@ both the fundamental and higher order modes, whether in the

bound or the leaky regime. Computed dispersion curves and modal current

distributions are presented for several cases of interest and, where possi-

ble, are compared with published data.

I. INTRODUCTION

A LTHOUGH open rnicrostrip lines have been ana-

lyzed by both spectral-domain [1], [2] and space-

domain [3], [4] integral equation methods, these analyses

are not easily expendable to lines whose upper conductor is

not an infinitesimally thick, planar strip. The authors are

only aware of two publications where more general cross

sections, namely rectangular [5] and circular [6] are consid-

ered. There is also a scarcity of results for higher order

modes in the leaky regime [7].

In this paper, we present a rigorous dispersion analysis

of open microstrip lines of arbitrary cross-sectional profile

based on the mixed-potential electric field integral equa-

tion (MPIE) [8], [9]. We prefer the MPIE to several other

possible forms of the electric field integral equation (EFIE),

because it requires only potential forms of the Green’s

function, which are less singular and converge faster than

the field forms needed in other EFIE’s. Another important

advantage of the MPIE is its conformity to well-estab-

lished numerical solution techniques, originally developed

for objects in free space [10].

II. FORMULATION

Consider a transmission line formed by an infinite,

perfect conductor above a grounded dielectric slab of

relative permittivit y c,, as illustrated in Fig. 1. The cross-

sectional profile L of the conductor may be arbitrary, but

— as indicated in Fig. 1—the solution procedure requires
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Fig. 1. PEC cylinder of arbitrary cross section above a grounded dielec-
tric slab.

that it be approximated by straight line segments. An eJ@t

time dependence is assumed and suppressed. Since the

structure is of infinite extent and uniform along the y a~is,

we postulate that the associated fields, as well as the

current density Jon L, vary with y as e ‘Jk@’, where k), is

the propagation constant, which may be complex. Hence,

we set ky/kO = ~ – jti, where /3 and a are the phase amd

attenuation (leakage) constants, respectively, normalized to

the free-space wavenumber ,kO. In the absence of external

excitation, the objective is to cc)mpute the propagation

constants and the associated currents for the fundamental

mode and for the first few higher order modes that can be

supported by the transmission line.

As was already mentioned, our approach is to formulate

an MPIE and to solve it numerically by the method of

moments [10]. We obtain the desired MPIE by specializing

to the present two-dimensional case one of the three gen-

eral MPIEs developed recently by the authors [11]. The

result is

iiX { jd(l)+ (v,- jky$)@(l)} =0, 1 G L ~(l)

where fi is a unit vector normal to L (cf. Fig. 1), Vf is Ithe

transverse operator nabla, A is a modified vector potential

[8], which is related to J as

A(l) = j&(l12’)J(l’) dl’ (2)~—

and @ is a scalar potential, which is related to the charge
density q as

@( Z)=@$(lll’)q(l’)dl’ (3)
L
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where, in view of the continuity equation,

d~) = ;(%- jkyj)”w). (4)

We say that (1) is in a mixed-potential form, because it

involves both the vector and the scalar potential, the

former expressed in terms of J, and the latter in terms

of q.

The expressions for the dyadic kernel ~~ and the scalar

kernel K+ comprise improper spectral integrals of the

form

S [j(kX)] = ~w ~(kX)e-J~zlf’+z’J e-Jk~[X-X’)dkX (5)
—co

where kx is the Fourier domain counterpart of x. With this

notation, the nonzero elements of ~~ and K@ can be

expressed as [12]
—

[1qm(,r-l)s ~K: Z.–KZ; .*

[“1
Jcr-l)s *K;z = – KZA,= ~

( [j~rkzl + k,z tan (k,z~)
K=: . !!

~n g(l~–r’l)+s
jkzlD e

2 jkzl
+(cr–l)~

11

1

{ [

kz2 cot (kz2h ) – jkzl
K@. —~mco dir- O-s

jk,lDh

2 jkzl
+(cr–l)~ 1}

where

D’= jc,k,l – kz2 t~ (kzzh)

Dh = jkZ1 + kz, cot(k,zh)

kzi = {K; – k: , i=l,2

/K,= k; —k; , i=l,2

and

g(lr– r’1) = fHf2)(tc11r-r’1).

(6)

(7)

(8)

(9)

(lo)

(11)

(12)

(13)

(14)

(15)

Here, Hj2) is the zero-order Hankel function of the second

kind, kl = O/VOCO and kz = ti~pococ, are the waVenum-

bers of the upper medium (which is taken to be free space)

and the slab, respectively. The vectors r and r’ refer,
respectively, to the field and source points in the xz plane

and are on L uniquely specified by 1 and l’.

As was already alluded to, the above equations represent

just one of the three MPIE’s developed in [11]. That more

than one MPIE is possible is a direct consequence of the

nonuniqueness of the vector potential in the presence of a

dielectric interface. This point can be better explained as

follows. Referring to Fig. 1, consider an x-directed

Hertzian dipole above the slab. As is well known [13], two

components of the vector potential A are needed in this

case to satisfy the boundary conditions at the interface. In

an early paper, Hoerschelmann [14] used A= in addition to

the primary AX component, and this became the preferred

choice in the literature. However, as was more recently

pointed out [15], one might use as well AX and AY (or even

xlY and A=). Following [11], we characterize the former
choice (AX, A=) as traditional, and the latter (AX, A ~) as

alternative.

There is also a difficulty associated with the scalar

potential 0. Namely, as first discussed by Mosig and

Gardiol [16], the scalar kernel K o may be interpreted as

the potential of a single point charge associated with a

Hertzian dipole. However, it was recently shown by

Michalski [17] that—unless the alternative form of the

vector potential is employed and the objective is confined

to a single dielectric layer— the scalar potentials associated

with the horizontal and vertical dipoles are different. This

poses a dilemma, since only one K o can appear in the

MPIE. As first suggested by Michalski [8], this difficulty

can be remedied by choosing K o to be the scalar potential

of either the horizontal or the vertical dipole and by

properly modifying the vector potential kernel ~~. Hence,

choosing K Q to be the scalar potential associ~ted with a

horizontal dipole in conjunction with the alternative or

traditional vector potentials leads to two different MPIE’s,

referred to in [11] as formulations A and C, respectively.

On the other hand, choosing K@ to be the scalar potential

of a vertical dipole in conjunction with either the tradi-

tional or alternative vector potential leads to a third MPIE,

which is referred to in [11] as formulation B. Depending on

the geometry of the problem, one of the formulations may

be preferable to the others. The reader is referred to [11]

for a detailed discussion.

The MPIE listed above corresponds to formulation C of

[11] (traditional vector potential in conjunction with a

scalar potential of a horizontal dipole), which is particu-

larly well suited to the analaysis of planar microstrips, in

view of the fact that K<x = K~y and K~y = K~! = O. Con-

sequently, only one spectral integral arises in the computa-

tion of A.

III. SOLUTION PROCEDURE

Since (1) has a mixed-potential form, it is amenable to

the moment method procedures of Glisson and Wilton [10]

Although the latter were originally developed for objects in

free space, they can be readily adapted to the present case.

We note that except for the presence of the spectral

integrals, the only major difference between (1) and its

free-space counterpart is the dyadic character of the vector

potential kernel, which must be properly accounted for in

the solution procedure. Apart from that, the solution of (1)
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proceeds in a standard way [10]. Hence, we employ piece-

wise-constant (pulse) and piecewise-linear (triangle) basis

functions to represent, respectively, the longitudinal and

transverse components of J. The same functions are used

to “test” the equations in longitudinal and transverse

directions; however, the testing integrals are approximated

by a one-point rectangular rule quadrature. For more

details, the reader is referred to [10] and [18].

As a result of the procedure summarized above, a homo-

geneous system of simultaneous algebraic equations is

obtained for the current expansion coefficients, which has

nontrivial solutions for those values of lcY that cause its

determinant to vanish. Hence, to obtain the propagation
constants of the various modes of the microstrip, a search

is performed, using Muller’s method [19], for the zeros of

the determinant in the complex ICYplane. For each propa-

gation constant, the homogeneous system is solved for the

corresponding modal current distribution.

The spectral integrals (5) must be repeatedly evaluated

by numerical quadrature along suitable paths in the com-

plex kx plane. A typical integrand f(kx) exhibits a pair of

branch points at kx = + KI and one or more pairs of

surface wave poles. To determine the location of these

poles, we first find the roots of De(k,) = O and Dfi(k,) = O,

where k; = k; + k;, and then map them into the kx plane

for each value of ky. The correct choice of the integration

paths with respect to the branch-point and pole singulari-

ties of the integrands is crucial for the success of the

solution procedure [20] –[22]. It turns out that differ-

ent paths must be selected for the bound regime— where

the mode propagates unattenuated— and for two leaky

regimes— where the mode is attenuated due to loss of

energy either into the surface wave or into both the space

and surface waves [7], [23]. It has been conjectured [24]

that this is a possible reason why previous attempts to

compute leaky rnicrostrip modes by integral equation tech-

niques have not been successful. More details regarding

the evaluation of the integrals (5) can be found in [12] and

[22].

IV. NUMERICAL RESULTS

In Fig. 2, we present sample dispersion characteristics of

the first three higher modes in their leaky regime for a

microstrip line previously analyzed by Oliner [7] using an

elegant, but approximate, asymptotic approach [25]. The

rigorous and asymptotic results are seen to agree quite well

for the EHI mode; the agreement is somewhat less favor-

able for the higher order modes.

In Fig. 3, we present dispersion curves for the funda-

mental and first three higher modes in both the bound and

leaky regimes for a microstrip line with a higher dielectric

constant. The dashed line in Fig. 3(a) traces the largest
root of D‘( ~ ) = O and represents the dispersion curve of

the TMO surface wave mode of the slab. When ~ crosses

this line, the corresponding microstrip line mode enters the

leaky regime [7]. The same structure has been previously

analyzed by Lee and Bagby [26] in the bound regime only.

Their results for the fundamental mode and first two
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Fig. 2. Dispersion curves for the frost three higher modes of an open,
infinitesimafly thin microstrip line. (a) Phase constants. (b) Attenuation
(leakage) constants.

higher modes are also shown in Fig. 3(a) and are seen to

agree very well with our results.

In Fig. 4, we present the fundamental mode dispersicm

curves for a rnicrostrip line of infinitesimal thickness and

for microstrips with rectangular and trapezoidal profiles.

The latter may simulate the effect of the etching undercuts.

We note that the dispersion curve for a microstrip of finite

thickness lies below that of an infinitely thin microstrip.

However, we have found that when the “equivrdent widtht’

concept is used to approximately account for the strip

thickness [27], the dispersion curve actually moves up

when the strip thickness is increased.

In Fig. 5, we compame current distributions for mi-

crostrips of rectangular and trapezoidal cross sections at

~= 6 GHz. In this and subsequent figures, the current

distributions are normalized, so thalt the longitudinal cur-
rent density has a maximmtm magnitude of 1. Observe that,

as expected, the current density is considerably higher on

the bottom side of the conductor than on the top side.

In Fig. 6, we present the fundamental-mode effective

dielectric constant C.ff =j32 as a function of h /AO, where

AO is the free-space wavelength, fo~ a circular-wire trans-



2008 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 12, DECEMBER 1989

30-

25-

20- EHI

b

1 5-

1 0- --

05- — our results

❑ Lee & Bagby ’s results

00 I , , , f
o 10 20 30 40 50

f [GHZ]

(a)

201

15

a
10

IEH1
w=3.omm

h = 0.635mm
G = 9.8

\

LskS_
o 10 20 30 40 50

f [GHZ]

(b)
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mission line recently analyzed by Fach6 and De Zutter [6].

Their results are also plotted for comparison and are seen

to agree well with ours.

In Fig. 7, we present dispersion curves of the fundamen-

tal mode (EHO) and of the first higher mode (EEll) for the

circular-wire transmission line with d/h = 0.25. Observe

that in the chosen frequency range the EHI mode is leaky

throughout. In Fig. 8, we show the longitudinal and trans-

verse current distributions for both modes at d/A ~ = 0.3.

V. CONCLUSIONS

A rigorous solution has been presented for open mi-

crostrip transmission lines of arbitrary cross section in

both the bound and leaky regimes. Dispersion curves and

current distributions have been computed for microstrips

of infinitesimal and finite thickness and, where possible,

compared with data found in the literature.
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