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Abstract —The problem of an open microstrip line of arbitrary cross
section is solved by an integral equation technique in conjunction with the
method of moments. The approach is general and can handle as special
cases multiple strips and strips of finite or infinitesimal thickness. It
applies to both the fundamental and higher order modes, whether in the
bound or the leaky regime. Computed dispersion curves and modal current
distributions are presented for several cases of interest and, where possi-
ble, are compared with published data.

1. INTRODUCTION

LTHOUGH open microstrip lines have been ana-

lyzed by both spectral-domain [1], [2] and space-
domain [3], [4] integral equation methods, these analyses
are not easily extendable to lines whose upper conductor is
not an infinitesimally thick, planar strip. The authors are
only aware of two publications where more general cross
sections, namely rectangular [5] and circular [6] are consid-
ered. There is also a scarcity of results for higher order
modes in the leaky regime [7].

In this paper, we present a rigorous dispersion analysis
of open microstrip lines of arbitrary cross-sectional profile
based on the mixed-potential electric field integral equa-
tion (MPIE) [8], [9]. We prefer the MPIE to several other
possible forms of the electric field integral equation (EFIE),
because it requires only potential forms of the Green’s
function, which are less singular and converge faster than
the field forms needed in other EFIE’s. Another important
advantage of the MPIE is its conformity to well-estab-
lished numerical solution techniques, originally developed
for objects in free space [10].

II. FORMULATION

Consider a transmission line formed by an infinite,
perfect conductor above a grounded dielectric slab of
relative permittivity e,, as illustrated in Fig. 1. The cross-
sectional profile L of the conductor may be arbitrary, but
—as indicated in Fig. 1—the solution procedure requires
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Fig. 1. PEC cylinder of arbitrary cross section above a grounded dic¢lec-

tric slab.

that it be approximated by straight line segments. An ¢/**
time dependence is assumed and suppressed. Since the
structure is of infinite extent and uniform along the y axis,
we postulate that the associated fields, as well as the
current density J on L, vary with y as e /%7, where k, is
the propagation constant, which may be complex. Hence,
we set k,/kq =B — ja, where B and a are the phase and
attenuation (leakage) constants, respectively, normalized to
the free-space wavenumber k. In the absence of external
excitation, the objective is to compute the propagation
constants and the associated currents for the fundamental
mode and for the first few higher order modes that can be
supported by the transmission line.

As was already mentioned, our approach is to formulate
an MPIE and to solve it numerically by the method of
moments [10]. We obtain the desired MPIE by specializing
to the present two-dimensional case one of the three gen-
eral MPIE’s developed recently by the authors [11]. The
result is

ax{ jed(1)+(v,— jk,§)®(1)} =0, €L (1)
where # is a unit vector normal to L (cf. Fig. 1), v, is the
transverse operator nabla, 4 is a modified vector potential
[8], which is related to J as

A(1) = [ KA)- (1) dr (2)
=
and @ is a scalar potential, which is related to the charge
density g as

@U)=Lﬁ%umquvﬂ' (3)
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where, in view of the continuity equation,

o) =L (9,~ jt,5)- (). (@

We say that (1) is in a mixed-potential form, because it
involves both the vector and the scalar potential, the
former expressed in terms of J, and the latter in terms
of g.

The expressions for the dyadic kernel K 4 and the scalar
kernel K?* comprise improper spectral integrals of the
form

S[F(k)] = [ Fllk,) et ikt gk ()

where k_ is the Fourier domain counterpart of x. With this
notation, the nonzero elements of K 4 and K® can be
expressed as [12] -

Bo kzZCOt(kZZh)_ jkzl
KA=Ki="lg(r-r)-5
XX yy dq {g(lr r D [ jkleh
(6)

Ko zjkx

Ki=-Ki= 12, -1s| 25| Q
Ko 2 jk

K)‘:‘Z=_K£4V_Z_ er—l)S[DeD};x] (8)

Jek oy + kptan (ko h)
jk D¢
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kycot(kh)— jk,
K= —r))—8
4W€O{g(|r r|) [ jkleh
2jkzl
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Heo-n2a]l o
where
De = jfrkzl - kz2 tan(kzlh) (11)
D*= jk,, + k,,cot(k,,h) (12)
k,,=y{k?—kZ2, i=1,2 (13)
k,=k2—k2, =12 (14)
and

(15)

Here, H{® is the zero-order Hankel function of the second
kind, k;=w/re, and k,=w/pee, are the wavenum-
bers of the upper medium (which is taken to be free space)
and the slab, respectively. The vectors r and »’ refer,
respectively, to the field and source points in the xz plane
and are on L uniquely specified by / and /.

As was already alluded to, the above equations represent
just one of the three MPIE’s developed in [11]. That more

T
glir—r) = 7Hé”('<1|r —r')).
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than one MPIE is possible is a direct consequence of the
nonuniqueness of the vector potential in the presence of a
dielectric interface. This point can be better explained as
follows. Referring to Fig. 1, consider an x-directed
Hertzian dipole above the slab. As is well known [13], two
components of the vector potential A4 are needed in this
case to satisfy the boundary conditions at the interface. In
an early paper, Hoerschelmann [14] used A, in addition to
the primary 4, component, and this became the preferred
choice in the literature. However, as was more recently
pointed out [15], one might use as well 4, and A4, (or even
4, and 4,). Following [11], we characterize the former
choice (4,, A,) as traditional, and the latter (4,, 4)) as
alternative.

There is also a difficulty associated with the scalar
potential ®. Namely, as first discussed by Mosig and
Gardiol [16], the scalar kernel K® may be interpreted as
the potential of a single point charge associated with a
Hertzian dipole. However, it was recently shown by
Michalski [17] that—unless the alternative form of the
vector potential is employed and the objective is confined
to a single dielectric layer—the scalar potentials associated
with the horizontal and vertical dipoles are different. This
poses a dilemma, since only one K® can appear in the
MPIE. As first suggested by Michalski [8], this difficulty
can be remedied by choosing K'® to be the scalar potential
of either the horizontal or the vertical dipole and by
properly modifying the vector potential kernel K“. Hence,
choosing K? to be the scalar potential associated with a
horizontal dipole in conjunction with the alternative or
traditional vector potentials leads to two different MPIE’s,
referred to in [11] as formulations A and C, respectively.
On the other hand, choosing K ® to be the scalar potential
of a vertical dipole in conjunction with either the tradi-
tional or alternative vector potential leads to a third MPIE,
which is referred to in [11] as formulation B. Depending on
the geometry of the problem, one of the formulations may
be preferable to the others. The reader is referred to [11]
for a detailed discussion.

The MPIE listed above corresponds to formulation C of
[11] (traditional vector potential in conjunction with a
scalar potential of a horizontal dipole), which is particu-
larly well suited to the analaysis of planar microstrips, in
view of the fact that K = K and K/, =K, =0. Con-
sequently, only one spectral integral arises in the computa-
tion of 4.

III. SoLUuTION PROCEDURE

Since (1) has a mixed-potential form, it is amenable to
the moment method procedures of Glisson and Wilton {10]
Although the latter were originally developed for objects in
free space, they can be readily adapted to the present case.
We note that except for the presence of the spectral
integrals, the only major difference between (1) and its
free-space counterpart is the dyadic character of the vector
potential kernel, which must be properly accounted for in
the solution procedure. Apart from that, the solution of (1)
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proceeds in a standard way [10]. Hence, we employ piece-
wise-constant (pulse) and piecewise-linear (triangle) basis
functions to represent, respectively, the longitudinal and
transverse components of J. The same functions are used
to “test” the equations in longitudinal and transverse
directions; however, the testing integrals are approximated
by a one-point rectangular rule quadrature. For more
details, the reader is referred to [10] and [18].

As a result of the procedure summarized above, a homo-
geneous system of simultaneous algebraic equations is
obtained for the current expansion coefficients, which has
nontrivial solutions for those values of k, that cause its
determinant to vanish. Hence, to obtain the propagation
constants of the various modes of the microstrip, a search
is performed, using Miiller’s method [19], for the zeros of
the determinant in the complex k, plane. For each propa-
gation constant, the homogeneous system is solved for the
corresponding modal current distribution.

The spectral integrals (5) must be repeatedly evaluated
by numerical quadrature along suitable paths in the com-
plex k. plane. A typical integrand f(k,) exhibits a pair of
branch points at k = 4«k; and one or more pairs of
surface wave poles. To determine the location of these
poles, we first find the roots of D*(k,) =0 and D"(k,) =0,
where k2 = k2 + k7, and then map them into the k, plane
for each value of k,. The correct choice of the integration
paths with respect to the branch-point and pole singulari-
ties of the integrands is crucial for the success of the
solution procedure [20]-[22]. It turns out that differ-
ent paths must be selected for the bound regime—where
the mode propagates unattenuated—and for two leaky
regimes—where the mode is attenuated due to loss of
energy either into the surface wave or into both the space
and surface waves {7], [23]. It has been conjectured [24]
that this is a possible reason why previous attempts to
compute leaky microstrip modes by integral equation tech-
niques have not been successful. More details regarding
the evaluation of the integrals (5) can be found in [12] and
[22].

IV. NUMERICAL RESULTS

In Fig. 2, we present sample dispersion characteristics of
the first three higher modes in their leaky regime for a
microstrip line previously analyzed by Oliner [7] using an
elegant, but approximate, asymptotic approach [25]. The
rigorous and asymptotic results are seen to agree quite well
for the EH; mode; the agreement is somewhat less favor-
able for the higher order modes.

In Fig. 3, we present dispersion curves for the funda-
mental and first three higher modes in both the bound and
leaky regimes for a microstrip line with a higher dielectric
constant. The dashed line in Fig. 3(a) traces the largest
root of D°(f3) =0 and represents the dispersion curve of
the TM,, surface wave mode of the slab. When 8 crosses
this line, the corresponding microstrip line mode enters the
leaky regime [7]. The same structure has been previously
analyzed by Lee and Bagby [26] in the bound regime only.
Their results for the fundamental mode and first two
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Fig. 2. Dispersion curves for the first three higher modes of an open,
infinitesimally thin microstrip line. (a) Phase constants. (b) Attenuation
(leakage) constants.

higher modes are also shown in Fig. 3(a) and are seen to
agree very well with our results.

In Fig. 4, we present the fundamental mode dispersicn
curves for a microstrip line of infinitesimal thickness and
for microstrips with rectangular and trapezoidal profiles.
The latter may simulate the effect of the etching undercuts.
We note that the dispersion curve for a microstrip of finite
thickness lies below that of an infinitely thin microstrip.
However, we have found that when the “equivalent width”
concept is used to approximately account for the strip
thickness [27], the dispersion curve actually moves up
when the strip thickness is increased.

In Fig. 5, we compare current distributions for mi-
crostrips of rectangular and trapezoidal cross sections at
f=06 GHz. In this and subsequent figures, the current
distributions are normalized, so that the longitudinal cur-
rent density has a maximum magnitude of 1. Observe that,
as expected, the current density is considerably higher on
the bottom side of the conductor than on the top side.

In Fig. 6, we present the fundamental-mode effective
dielectric constant €. = 8% as a function of 4 /A, where
A, is the free-space wavelength, for a circular-wire trans-
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Fig. 7. Dispersion curves of the fundamental mode and the first higher
mode for a circular-wire transmission line. (a) Phase constants. (b)
Attenuation (leakage) constant of the higher mode.

mission line recently analyzed by Faché and De Zutter [6].
Their results are also plotted for comparison and are seen
to agree well with ours.

In Fig. 7, we present dispersion curves of the fundamen-
tal mode (EH,) and of the first higher mode (EH,) for the
circular-wire transmission line with d/k = 0.25. Observe
that in the chosen frequency range the EH, mode is leaky
throughout. In Fig. 8, we show the longitudinal and trans-
verse current distributions for both modes at d /A, =0.3.

{4
(51

(6]

V. CONCLUSIONS

A rigorous solution has been presented for open mi- [7]
crostrip transmission lines of arbitrary cross section in
both the bound and leaky regimes. Dispersion curves and
current distributions have been computed for microstrips
of infinitesimal and finite thickness and, where possible,

compared with data found in the literature.

(8]
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